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Secondary flow in a Hele-Shaw cell 

By B.  W. THOMPSON 
Mathematics Department, University College London? 

(Received 10 April 1967) 

Riegels (1938) investigated the breakdown of Hele-Shaw flow in a Hele-Shaw cell 
with unusually large separation distance 2h* between the walls. A theoretical 
outer expansion for the velocity was constructed in the case where the obstacle 
is a circular cylinder, using an intuitive inner boundary condition that seems to 
be correct in the limit h*-+O, but without explicit matching with the inner 
expansion. 

An inner expansion has now been found, and it shows that the solution in the 
inner layer forces terms into the outer expansion that are larger than those found 
by Riegels whenever h* is finite and not zero. 

1. Introduction 
In  1897 Hele-Shaw, who was making an experimental investigation into 

factors that influence boundary-layer thickness in the steady flow of a viscous 
liquid past cylindrical obstacles which have been confined between parallel plane 
plates, discovered that a t  very narrow separations of the plates the flow is 
laminar, and the streamlines as indicated by filaments of coloured dye closely 
resemble the theoretical streamlines in two-dimensional irrotational flow of an 
ideal non-viscous liquid past an infinite cylinder having the same cross-section, 
except in a boundary layer whose thickness is about the same as the distance 
separating the plates (Hele-Shaw 1897, 1898a, b) .  This may be called the HeZe- 
Shaw Efject. 

Stokes (1898) assuming that the flow is slow enough for inertia terms in the 
equations of motion to be neglected, and that the velocity component perpen- 
dicular to the confining walls is small compared with components in the central 
plane, showed that for a fixed Cartesian co-ordinate frame in which the walls 
have equations z = k h* (h* small), derivatives a2/az2 will be much larger than 
a2/ax2 or az/ay2, and therefore the equations of motion, to leading order, are 

where u, v, w are components of velocity in the x, y and x directions respectively, 
p is the dynamic pressure and ,u the coefficient of shear viscosity. 

t Now at Mathematics Department, University of Melbourne. 
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The term aw/az is in square brackets here because it was omitted by Stokes: 
however, it is better to retain it since the largeness of the derivative alaz may 
balance the smallness of w. 

Since p is independent of z by (1.1, iii), the first two equations can be integrated 
at once. Using the boundary conditions u = v = Q at z = & h*, we find 

If these values are now substituted into the continuity equation, then bearing 
in mind that w ought to be an odd function of z ,  there results 

where 

1 

(iii) w = 2- (h*2z - Qz3) Ap(z, y), 
2P 

This confirms that w is small compared with u and v provided h* is small. How- 
ever, when we put x = * h* and try to apply the condition w = 0 for z = ? h", 
we find that the coefficient of Ap(x, y) cannot vanish, and therefore we must have 

giving w = 0 for all z in - h* < z < h*, which indicates that aw/az can in fact be 
omitted from (1,1, iv) without imposing a different form on the final solution. 

Thus u : v : w = - aplax : -splay : 0, independent of z ,  and therefore the 
streamline shapes will be the same in all planes parallel to the walls, and these 
shapes will in fact be those of streamlines in plane potential flow of an ideal liquid 
past an obstacle having the same cross-section, in which it is clearly necessary 
that the obstacle boundary should occur as a streamline (i.e. the normal com- 
ponent of velocity should vanish at  the obstacle for each z ) .  The latter is a suffi- 
cient condition to determine p apart from a constant factor giving the speed at 
which liquid enters the cell in the central plane. 

Since the flow is viscous, the tangential velocity components ought also to 
vanish at  the obstacle, but the freedom to meet this condition was lost in obtain- 
ing (1. l), where terms in p a2/ax2, a2/ay2 occurring in the viscous forces were 
neglected, and consequently the order of the equations of motion in the variables 
x and y was depressed. 

Stokes noted this difficulty and pointed out that equations (1.1) are not valid 
near the obstacle because in this region the relation 

82  a2 a 2  

a x 2  ax2 ay2 
- $ A =  -+- 

is not true. The flow regime in a Hele-Shaw cell is thus divided into two regions 
characterized by the relative magnitudes of a2/az2 and A: an outer region where 
a2/ax2 % A and an inner, boundary layer where A = 0(a2/az2) .  
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The form of (1.2) suggests that in the outer region a/& is O(l/h*)  whilst a/ax 
and a/ay are O(l) ,  and therefore in the inner region both a2/az2 and A are O(l/h*2) ,  
and this in turn suggests that the inner region must be of thickness O(h*). These 
intuitive ideas are confirmed in the solution we shall obtain. 

In  Hele-Shaw's original experiments a suitable value of h* was found by trial, 
and in a typical case the separation of the walls would be rather less than + mm. 
Riegels (1938) examined the effect of choosing separations of 1-2 mm in a large 
Hele-Shaw cell containing a circular obstacle, with the object of finding a critical 
dimensionless parameter whose value should predict for any proposed experi- 
mental conditions whether a valid Hele-Shaw effect could be obtained or not. 

By substituting the Stokes solution in the hitherto neglected inertia terms of 
the incompressible Navier-Stokes equations, still supposing that a2/ax2 9 A, 
Riegels found an improved approximation to the outer velocity through which 
each of the variables u, v, w/h* gains an extra term in the form of a factor 

multiplying functions of x, y and z/h* that are O( 1) compared with h*, where Q 
is the speed of liquid entering the cell in the central plane, p is its density and a 
is the radius of the obstacle. Hence W is a Reynolds number based on the flow in 
the central plane and h = h*/a gives a scaling of the separation distance to the 
dimensions of the obstacle. 

Experiments were then performed in which it appeared that the streamline 
shapes become distorted whenever A is close to or larger than unity, and on this 
evidence it was assumed that a solution of the full equations of motion could be 
obtained in the outer region in the form of a series expansion in powers of A: 

q* = (u, v, W/h*) = q,*(x, y, x/h*) + AqT(X, 9, z/h*) + -A2& + . . . , (1.4) 

where q;F is the Stokes solution and qT is the improvement described above. 
Riegels found, however, that whereas it is possible to determine q;F so that the 

normal component vanishes on the inner boundary, although tangential com- 
ponents remain finite, it is impossible to determine qT to make any  component 
vanish for all z in - h* 6 x 6 h*. 

The outer solution is not to be judged defective on this account, for it is not 
generally a property of outer perturbation solutions that they will meet any of 
the conditions at  the inner boundaries. However, the existence of a physically 
obvious inner condition for the Stokes leading term qg enabled this term to be 
evaluated explicitly without reference to the inner solution of the same order, 
and if a similar condition could be seen to hold at order A then it might be hoped 
that q: could likewise be fully determined even if the inner equations should 
prove too difficult to solve to the order which is required to determine qT by 
matching. 

In  fact Riegels did attempt an inner solution and was able to produce an inner 
tangential velocity term of O( 1) which matches qg when (x2 + y2)t - a = O(h*) 
and vanishes for x2 + y2  = a2, but if higher orders were attempted then apparently 
the attempt was not successful. 
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In  the absence of an inner solution to O(A) it  was vital to have a plausible inner 
condition to impose on qT in order to determine arbitrary quantities appearing 
in it, and the one Riegels used was 

q*. f i d z  = 0, jYh. 
where fi is the unit vector normal to the surface of the obstacle. Under this condi- 
tion the obstacle becomes a streamline of the z-averaged flow. 

Riegels's solution for q;l; + Aq: and p is most conveniently expressed in 
cylindrical polar variables ( r ,  8, z )  where x = r cos 8, y = r sin 0. If the correspond- 
ing velocity components are (U,V,w) then these have the following values in 
Riegels's solution: 

a3cos28 a5 

(1.6) 

(ii) 

(iii) w/Qh* = -TI:* H ( t )  dt ,  

(iv) AplpQ2 = - 2  r + -  cosO-SA l--cos28+- ( 7 ( 2,"2" J 
where H(t )  = t6/15-t4/3+ 11t2/35- 1/21. 

The terms involving A in (1.6) may be thought of as a secondary flow super- 
posed on the Stokes solution A = 0. They are not symmetric about the line 
8 = in, and streamlines are displaced further on the downstream side. The 
polynomial H(t )  has two zeros in the range 0 < t < 1, one at  t = 0.433 and one a t  
t = 1.0. In  this range H ( t )  lies between values -0.006 at t = 0 and 0.004 a t  
t = 0-75, so the extremes of displacement of the streamlines from the Stokes flow 
will occur (in opposite senses) in the planes whose equations are z = 0 and 
z = & 0.75h* respectively. 

Riegels plotted streamlines in these two planes for A = 4.0 starting from 
equally spaced points far upstream. Theory was then compared with experiment 
by superposing these drawings on a photograph of an actual flow with A = 4.0. 
Although the agreement is good in the main, there appears to be an unexplained 
boundary-layer separation about 8 = 60°, and it seems probable that a value as 
large as A = 4.0 lies outside the range of validity of the series (1.4). 

In  general Hele-Shaw flow should be a two-parameter problem, for 9 and h 
are independently variable. However, the outer series (1.4) proposed by Riegels 
contains only one parameter A = 9 h 2 ,  and accordingly corresponds to the limit 
h+ 0 keeping g'h2 finite, which has been taken at the stage of the outer equations 
of motion before they have been solved. 

Although in this limit the thickness 6 of the boundary layer goes to zero, the 
inner solution itself still stands: and if we write r/a = 1 + h X ,  in the expectation 
discussed above that S = O(h),  then the outer solution is still bound at r = a to  
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match the limiting values of the inner solution as X + m. It is still prevented by 
the depression of order noted above from meeting any other conditions at  r = a. 

Now the inner solution is primarily an expansion in 6, i.e. in h, and for this 
reason a matching even with (1.4) requires the outer solution to be treated as an 
expansion in h; and if the limit h+O is to be taken this must happen after the 
matching has been done. 

A new analysis of the Hele-Shaw problem for the circular cylinder will now be 
made, in which both inner and outer expansions will be treated as expansions in 
h, and a matching will be effected as far as O(h2) corresponding to Riegels's result. 
Because of the matching, the intuitive inner boundary condition (1.5) will be 
dispensed with, and it will be found that it only holds good in the limit h-t 0, and 
then only because it accidentally agrees with the condition w = 0 for z = & h*, 

which requires by (1.6) that H(t)dt = 0, and thus E,dr = 0 also (see 1.6, i). s: 
2. Formulation of the problem : the solution of O( 1) 

We now suppose that a circular cylinder of radius a is confined between the 
walls z' = & h* of a Hele-Shaw cell, where the axis of z' is also the axis of the 
cylinder. We denote the position and velocity vectors of $1 by r' = (XI, y', z'), 
q' = (u', v', w') respectively, and the pressure by p',  and define new outer vari- 
ables scaled to the dimensions of the problem as follows: 

(2.1) I (i) 

(ii) 
(iii) p = Wh2p'/pQ2 where 99 = pQa/,u, h = h*/a, 

r = (x, y,z) where x = x'/a, y = y'/a, z = z'/h* = z'/ha, 

q = (u, v, w)  where u = u'/Q, v = v'/Q, w = w'/Q, 

and, following Riegels, we shall put Wh2 = A. 
As before, G;, is the speed of liquid entering the cell in the central plane z = 0, 

and p and ,u are the density and viscosity respectively. 
At the same time we introduce polar variables r = (r,  8, z)  where x = r cos 8, 

y = r sin 8, and denote the velocity components corresponding to variations in r 
and 8 by ZC and 3. 

In  terms of the Cartesian variables (2.1) the incompressible Navier-Stokes 
equations can be rearranged (Thompson 1964) to take the following forms 
(where subscripts denote derivatives) : 

where A = a2/ax2+a2/ay2, and in the outer region it can be assumed that all 
variable quantities in (2.2) are O(1). Stokes's equations (1.1) are obtained by 
taking the limit h-t 0 in (2.2) except for (1.1, iv) which requires the additional 
assumption, not needed here, that IwI < max (Iu(, Ivl). We also make no assump- 
tion at this stage about the size of 9. 
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vanish a t  the confining walls and on the obstacle boundary, so that 
The boundary conditions are, first, that all the velocity components should 

(2.3) 1 (i) u = v = w = O  for z = + 1 ,  

(ii) u. = ?7 = w = 0 for r = 1. 

Also, since in practice the sides of a Hele-Shaw cell must be sealed, say a t  
y’ = L, we should have u = v = w = 0 for y = t- L/a. However, it  was shown 
by Hele-Shaw and Lamb (see Hele-Shaw 1898a) that effects due to the seals may 
be neglected if L > 15a (approximately) and the physical boundary replaced by 
a condition of uniform Poiseuille flow at infinity, i.e. 

In  terms of the outer variables, (2.1), Stokes’s solution for the leading order in 
the outer solution may be read o f f  Riegels’s solution (1.6) by putting A = 0, and 
is thus 

(i) u = Z, = ( 1 - z ~ )  (I-:) cos 8, I 

I (ii) V = Eo = -(1-z2) 

(iii) w = wo = 0,  w/h = w1 = 0, 

(iv) p = p p o =  -2  

which meets all the conditions (2.3,4) except V = 0 for r = 1. 

such that 
For the inner region we define certain extra inner variables X ,  P, U ,  V ,  W 

(2.6) 
(iii) q = ( U ,  V ,  W), using polar directions, 

and, taking the thickness of the inner region to be O(h),  treat both a/aX and 8/82 
as O( 1) in the resulting equations of motion.? 

1 (i) r = 1 + h X ,  (ii) p = P ,  

This gives, to leading order, 

(i) Px = P, = 0, (ii) U x + K  = 0,) 

(iii) V2V = P where V 2 = - + -  
ax2 axz ’ 

subject to 

(i) U =  V =  W=OforX=O,  

(ii) as X+m, P, U ,  V ,  W approach the values o f p ,  G, V, w at r = 1, i.e. 

P+ -4cos8, V+ -2(1-z2)sin8, U, W+O. 

t The equations of motion in terms of X ,  8, z as independent variables are listed in the 
appendix. 



Secondary $ow in a Nele-Shaw cell 385 

These are the inner equations found by Riegels (1938). Since P is to be in- 
dependent of X it must retain its outer value - 4 cos 8 throughout the inner 
region, and so (2.7, iii) becomes 

V2V = 4 sine. (2.8) 

The solution of (2.8) which meets the boundary and matching conditions is 

(2.9) V = V - - 2  l-z2-44C.(-)"k,3e--k~Xcosk,x sine, 

where kn = (n + 8)  T, and since the outer so, w,, already meet the inner boundary 
condition we may take the leading order terms U,, W, in U, W to vanish identically. 

The largest term in X in the expansion (2.9) involves (8/n3)e-snx which is less 
than 0.05 when X 3 2, and becomes negligible while still X = O(l) ,  thus con- 
firming that for this term the inner region has a thickness that is O(h). The par- 
ticular value X = 2 gives a distance from the obstacle equal to the distance 
between the walls, which was the boundary-layer thickness predicted by Stokes. 

1 m 

O -  0 

3. Terms of order h 

velocity and pressure can be expanded as simple power series in h in the forms 
The form of the outer equations and the Stokes solution suggests that the outer 

I (i) u = uo+hul+h2u2+..., 

(ii) = vo + hv, + h2v2 + . . . , 
(iii) w = h2w2+ ..., 
(iv) p =p ,+hp ,+h2p2+ . . . ,  

where, for example, u1 = u,(x, y, z, W), with equivalent expressions for the polar 
variables. 

give 
We shall also assume tentatively that the inner solution can be expanded to 

(3.2) I (i) U =  hq+h2U2+ ..., 
(ii) V = V, + hV,+h2V,+ ..., 
(iii) W = hW, + h2W2 + . . . , 
(iv) P = Po +hP,+h2P2+..., 

where, for example, P2 = P,(X, 8, z, W), unless the matching should prove to 
demand other functions of h in either of these expressions. 

By the outer equations of motion (2.2) the terms of O(h) in (3.1) satisfy 

(3.3) 
(9 ~ l z z  = P l X 9  (ii) v1*, = P l y ,  

(iii) p,, = 0, (iv) w2, = - ulx - vly, 

with boundary conditions 

(i) u1 = v1 = w2 = 0 for z = + 1 ,  

(ii) pl ,ul ,vl ,w2+0 as r+m. 
(3.4) 

26 Fluid Mech. 31 
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Thus p l ,  ul, vl, w2 satisfy the same equations as p,, u,, v,, w1 except that 
p l ,  u1 -+ 0 as r --f co. The solution is therefore 

(3.5) 

(i) u, = - &(I - x2)p1&, Y), 
(ii) vl = - &( 1 - z2)pl,(x,  Y), 
(iii) w2 = $ ( x  - +x3) Apl, 

and by the boundary condition w2 = 0 for z = 5 1, we have 

giving w2 = 0. 
The solution of (3.6) is most conveniently expressed in the polar variables 

( r ,  8). Since p l  should be an even function of 8, the general form of pl (r ,  8) must be 

where the (pm are all constants to be determined later. 
In  polar variables the solution (3.5) is equivalent to 

1 
El = - g( 1 - x2)  plr, 2r 

(3.8) 
(i) 

(iii) w2 = 0, 

(ii) G1 = - - (1 - x 2 )  plo,  

and putting r = 1 +hX in (3.1) we see that for X+co the inner variables Pl, Ul, 
V,, W, must match values 

I (i) PI = Pl(1,  @), 

(ii) Ul = (1 - x 2 )  [2X cos 0 - +pIr( 1, 8)] ,  

(iv) Wl = 0. 

Substituting (3.2) in the inner equations of motion we obtain terms both of 

(i) Pls = Pk = 0, (ii) V 2 q  = -XP,,+ Pl,,) 

O( 1) and O(h) which must satisfy 

(iii) V2Ul = PZx, (iv) V2Wl = P2#, 
(3.10) 

(v) UlX+W,, = -KO, 

Pl is therefore to be a function of 8 only, and accordingly it must be equal to 
the quantity pl( 1, 8) which, of course, has yet to be determined. 

By (2.9) we can write V,, in explicit form in (3.10,v), giving 
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and if we write plv(l, 8) = B(8) in condition (3.9,ii), so that 

q-+(1-z2)  [23cos8-@?(8)] as X-tco, 

then the following transformation is suggested 

( i )  U, = $z(x, 8, 2) + (1 - 22) [2x cos 8 - gqe)-j\ 

387 

I (3.11) 

"(-)" 
o kn 

+ 8 cos 8 z e--knX cos k,z, 

(ii) w, = -$x(X, 8, z) ,  

(iii) Pz = Pz*, - 2X2 cos 8 +XI?(@, 

by means of which the continuity condition (3.10,~)  is identically satisfied. 
Substituting in the remaining equations of (3.10) we find 

(i) V211., = Pgx, (ii) V2$x = -Pz*,. (3.12) 

Thus after differentiating (3.12, i) with respect to X and (ii) with respect to z 

there follows VZP; = 0, 

whence, taking the Laplacians of both equations (3.12, i, ii) we have 

a a 
(iii) - V4$ = - V4$ = 0. ax az (3.12) 

The matching conditions (3.9) require $ x , $ z + O  as X-too, and so we can 
define $-+ 0 as X-tco as well, and then (3.12, iii) reduces to the single condition 

V4$ = 0. (3.13) 

The boundary conditions on $ are 

(i) $x = $ s = O  for z =  +1,  

(ii) $x = 0 for X = 0, 

(iii) 
(3.14) I ( - I n  

o kn4 
$z = +( 1 - 22) B(8) - 8 cos 8 z - cos k,z for X = 0 

(of. (3.11,i)) 

(iv) @ -+ 0 as X -+ 00, so that 

(v) @ E 0 for z = 1 by (i). 

These boundary conditions are in fact sufficient in themselves to determine 
B(8) = pl,(l, O ) ,  for items (i) and (v) require that for all X :  

= 0, using (v). (3.15) 

This condition must hold in particular when X = 0, and applying it to (3.14, iii) 
we find 

25-2 
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4) 

whence B(I3) = 24 cos 13 k i 5  = 744135) n-5 cos 0, (3.16) 

where c(5)  is a Riemann zeta-function. Thus in (3.7) it follows: 

and therefore for h + 0 a term of order h is missing from Riegels's expansion (1.4) 
which is of lower order in h than the term in A = 9h2  which he found. The missing 
terms are given by 

0 

'po = 'p2 = 'p3 = ... = 0, but 'pl = 744~-5<(5) 2: 2-521, 

'p1 

r 
p1 = --cose, (ii) 

Riegels' inner condition (1.5) would require of these that 

u,dz= 0 for r =  1, 
s 1 1 -  

which is not true. 
The solutions obtained by Riegels apply, as noted above, in the limit h+O 

with Wh2 finite. However, in order to obtain a visible effect due to secondary 
flow, Riegels's experiments were in fact carried out with unusually large values 
of h, and this suggests that the effect of the terms for h + 0 ought to have been 
visible in the photographed streamlines as compared with the plotted stream- 
lines at A = 4.0. 

Unfortunately Riegels does not record the radius a of the cylinder which was 
used in his apparatus, but it looks from the photographs and the other published 
dimensions as if it may have been about 1 cm or less, in which case h would have 
been about 0.1. 

The effect of a non-zero value of h of roughly this size can be quite easily 
assessed, for upon including p1 in the value of the outer pressure we find that 

P = P)o+hPl+O(h2) 

which is the potential for flow past a circular cylinder of radius 

{1+&p1h}+ N l+&'plh 

or about 1 + 0.62h. Riegels's condition is met at this value of r by the compounded 
solution ;it(l) = co + h;itl since u(1) = o for r = (1 + 4 'plh}+, 

which shows that there is an interaction between the inner and outer regions 
which has the effect of defining a displaced circular boundary actually in the flow 
regime. With respect to this boundary the outer flow can still be regarded as a 
flow past a circular cylinder, but whether the actual streamlines have this 
appearance or not depends on the behaviour of U,, Vl and Wl at X N $'pl since 
this is a station inside the inner region. 

- 
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It follows that, to this order, the expansions computed by Riegels can be made 
to agree with the experimental field simply by increasing the scale of r in the 
ratio 1.06 : 1 for h = 0.1. The good agreement observed by Riegels is thus ex- 
plained since such a small magnification of r would hardly be detectable on a 
photograph. 

Now that B(8) is known we can go on to solve for U,, V, and W,. Equation 
(3,10,ii) for V, is not coupled to the others and gives 

V2V, = XPyj + P1e = ( 'pl - 4 X )  sin 8, 
with 

(i) V, = 0 for X = 0 or forz = f 1 ,  

(ii) V,+(l-z2)(2X-+cp,)sin8 as X+m. 

Comparison with (2.9) for V, gives at once 

V, = 2Xsin0(1-z2)+$'p1& 

where, as before, k, = (n + 4) n. 
The values of U, and W, depend on the solution of (3.13), i.e. of 

V4@ = 0 

subject to the conditions (3.14). For this we shall seek an eigenfunction expansion 
in the form 

(3.17) 

where C, = A ,  + iB,, say, are complex constants. Substituting in (3.13) we obtain 
for each r 4";' - 2K:$i + K:+, = 0, 

and in order that @x = = 0 for all X at z = 2 1 we need 

+,( 4 1) = +x f 1) = 0. 

By the boundary conditions (3.14) @ should be an odd function of z, and under 
all the conditions we find that 

+,(x) = (1 + cos 2K,) sin K, z - 2K, z cos K, z, (3.18) 

where sin2K, = 2K, (T = 1,2,  ...). (3.19) 

In  order that @ -+ 0 as X +- 00, the K, must all lie in the second quadrant of the 
complex plane. The approximate distribution of the K, has been given by Hardy 

(1902) as 2K, = - (2r + +) n + i log (4r + 1) n, 

and precise positions for 1 < r < 10 have been tabulated by Hillman & Salzer 
(1943) to 6 places of decimals, and a new larger table correct to 9 decimal places 
for 1 < r < 20 has now been calculated in the course of numerical work associated 
with the present problem (Thompson 1967). 



390 B. W .  Thompson 

i.e. 
Although the eigenfunctions #,(z) must evidently satisfy the condition (3.15), 

zq5; ax = 0, 

they are in no sense mutually orthogonal. 
The numerical determination of coefficients C, to insert in (3.17) therefore 

constitutes a problem of considerable difficulty, and in particular the most obvi- 
ous scheme, in which the series (3.17) might be truncated down to, say, the first 
ten terms and the boundary values fitted by least squares is very highly ill- 
conditioned. 

A workable method has, however, been devised by Gaydon & Shepherd (1964). 
Here both the individual q5,(x) and the given boundary values at  X = 0 are 
expanded in terms of orthogonal odd functions & ( x )  which satisfy the same 
boundary conditions &( k 1) = Yi( k 1) = 0 as the $,(z), and further satisfy a 
differential equation of the same order, namely 

yc,'.'-ptyi = 0. (3.20) 

If we also impose the normalizing condition 

Y;(x)dz = 1, 
Stl 

then we find that 

where the pr  should be the set of positive solutions of the equation 

tan pi = tanh pi, 

whose approximate values are pi = (i + &) 7~ (i = 1,2,3,  ...). 
In  this way an infinite set of linear algebraic equations is generated for the C,, 

and after inversion these yield the following values of the first 10 coefficients 
c,, c,, . . . , c,, (C, = A, + ill,). 

r 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

A, 
- 0.06942 
+ 0.00717 
- 0.00082 
- 0.00012 
+ 0.00024 
- 0.00027 
+ 0.00041 
- 0.00061 
- 0*00021 
+ 0*00001 

Br 
- 0.00926 
- 0.00995 
+ 0.00217 

+ 0.00048 
- 0*00031 
+ 0~00021 
+ 0.00013 
- 0.00019 
- 0~00002 

- 0.00096 

TABLE 1. Values of A,, B, found by the method of Gaydon & Shepherd (1964) 

By (3.16) the rate of convergence of V, to the outer value will be the same as that 
of V,. Values of 27, and W, are given in tables 2 and 3. Noting that ReK, 2: - 3.7, 
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the largest term in X in U, will be e4"x/(+n)4 which arises out of the leading 
term in X in (2.9), so there is no reason to change the original estimate of the 
thickness of the inner region, i.e. 2h*, which was based on the form of (2.9). 

1.0 \ 
0.9 
0.8 
0.7 
0.6 

0.4 
0.3 
0.2 
0.1 

0.5 <lo-4 

0.1 0.4 
0.000 0-000 
0.002 0.034 
0.004 0.068 
0.007 0.101 
0.010 0.131 
0.012 0.157 
0.013 0.179 
0.015 0.195 
0.016 0.207 
0.016 0.214 
0.016 0.217 

I (10-4 

U,/cos 8 
A 

\ 

0.6 1 *o 2.0 
0-000 0.000 0.000 
0.074 0.184 0.529 
0.145 0.353 1.00 
0.211 0.503 1.42 
0-270 0.636 1.79 
0.321 0.749 2.09 
0.363 0.842 2.35 
0.396 0.915 2.54 
0.419 0.967 2.68 
0-434 0.999 2.77 
0.438 1.009 2.80 

Outer value 
& 

1.0 2.0 
0-000 0.000 
0.14 0.52 
0.27 0.94 
0.38 1.40 
0.48 1.76 
0.56 2.06 
0.63 2.31 
0.68 2.50 
0.72 2.64 
0.74 2.72 
0.75 2.75 

TABLE 2. Values of U,/cos 0 found by summing the values of the first ten terms of (3.17), 
compared with the outer terms of O(h) at  S = 1.0 and X = 2.0 

z\x = 0 

0.6 

0.4 

0-0 

0.1 

0.000 
0.002 
0.006 
0.009 
0.012 
0.012 
0.011 
0.010 
0.007 
0.004 

, 0.000 

0.4 

0.000 
0-002 
0.006 
0.010 
0.014 
0.015 
0.015 
0.013 
0.010 
0.005 
0.000 

0.6 

0.000 
0.001 
0.003 
0.006 
0.009 
0.010 
0.010 
0.009 
0.007 
0.004 
0.000 

1.0 

o*ooo 
0.000 
0.001 
0.002 
0-003 
0.003 
0.003 
0.003 
0.002 
0.001 
0.000 

2.0 

0.000 

TABLE 3. Values of W/cos 0 found by summing the values of the f is t  
ten terms of (3.17) 

4. Terms of order h2 
The terms of O(h2) in the outer expansion (3.1) satisfy equations 

1 
(0 
(W 
(iii) p ,  = o ,  

%zz = Pzx  + ~(uouox + Vo%y), 

?J2zz = Pzg + W(UOV0, +?J,vo,), 

(iv) was = -uzx -vz~ .  

Since we have 

0 - - -1 2(1 -Z2)110,, 210 = -$(I - 4 P O ~ ,  

u2zz = %{pZ + =&2( 1 - 2x2 + x4)(Vp0)2}, 
it follows that a 
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where ( V P ~ ) ~  = pgz +pi2 / ,  or, by the condition u2 = 0 for z = 5 1, 

and similarly I 

whence by (4.1,iv) I 

Since w3 = 0 for z = -t 1, we now have by (4.2, iii) 

and solving this in polar variables with p o  given as 

by (2.5, iv), we arrive at the following form for p 2 :  

p 2  = W w(r,6')--  1 - - ~ 0 ~ 2 6 ' + -  { 35 12(  r2 9.4' ?I (4.3) 

where w is an undetermined even function of 6' satisfying 

AW = 0, 

and since u2+0 as r+co, we need awpr-to as r+m. Hence evidently the 
general solution for w ( r ,  6') is 

, cosn6' 
w = 'PLlogr+C, 'Pn- 

1 rn ' (4.4) 

the cp; being constants. 

the matching values of U2, V,, W2 for X -+ 00 are to be 
Expanding (4.2,  i, ii) in powers of h about r = 1, the terms of order h2 show that 

(i) U, = (1 - 9) ( ylX - 3X2)  cos 6' + W{H(x)  (cos 26' - 1) - +( 1 - z2)  a,( 1 ,  S)}, 

(ii) V, = (1 - x 2 )  ( cplX - 3X2)  sin 6' + W{H(x)  sin28 - +( 1 - z2) wT( 1, O)], 

(iii) W, = 0, 1 
(4 .5)  

26 z4 11 1 
where, as in (1.6), 

H(z )  = ---+-$-.- 
15 3 35 21' 

The inner equations of motion show that 

(if V2U2 = P3x-BVi+2T&- qX, 
(ii) VzW2 = P3,- W,, 

(iii) U2, + W,, = - U, + XV,, -KO, 
and there is an uncoupled equation for V, which is not quoted. 

(4 .6)  
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The set of equations (4.6) will obviously be very difficult indeed to solve, but 
our purpose will be sufficiently served if we can find another stream function as 
in 5 3 whose boundary values determine W ( T ,  O), since this will determine the outer 
solution to the order found by Riegels without recourse to the intuitive inner 
condition (1.5). The appropriate transformation this time is 

I (i) U2 = $z+(1-~~)(cplX-3X2)cosB 

+ 9 { H ( z )  (cos 20 - 1) - &( 1 - 22)  wr( 1, 0)} 
m 

4( 'pl - 4X)  C [( - )ne--kmX cos k,z]/k$ 
0 

(ii) W2 = -+,. 
Combining (4.6, i, ii, iii) we find that 

+ XV2V,ez 
= F2, say. 

It is a simple exercise in algebra to show that FlX + FZz = 0 as well as Fl, F2 -+ 0 
as X -+ co. Hence Fldz - F2dX is a perfect differential and so there exists a single 
equation in the form 

v4$ = ~ ( x ,  e, 2, w), (4.9) 

which is equivalent to (4.8, i, ii). 

X = 0 satisfy the following boundary conditions 
The function $(X, 0, x ,  92) must by (4.5) and the condition U2 = W2 = 0 for 

I (i) $x= II.,= 0 for x =  + 1 ,  

(ii) $x ,$B-+O as X+co,  

(iii) $x = 0 at X = 0, and also 

(iv) $z = a{+( 1 - 2 2 )  wr( 1 , O )  - H ( z )  (cos 28 - l)} 

and once again the condition (3.15) is applicable to give 

/ ~ . z ~ z z d z  = 0 for all X, 

(4.10) 
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sin 0 sin 28 
ij2 = - & ~p;( 1 - z2) - + %H(x) - r2 r3 ' 

4 2  

(ii) 

(iii) w2 = 0, w3 = -- j H ( z ) d z ,  
r6 0 

which requires, when X = 0, that 

) (4.11) 

8 a 1  
wr(l,O) = - Cp1cosOC,, 

3 9  0 k7b 
[k, = (n++)  n], 

or, by (3.16), w(r, e)  = - cp; cos e/99r. 

Thus, substituting for w ( r ,  0) in (4.2) and expressing the results in polar vari- 
ables, we find 

case 12 ( 1-- 2c0s2e+L). 

J (iv) p 2  = - + ~ p ; ~ - -  
3 5 9  r2 r4 

From (4.11) it  is clear that once again Riegels's inner condition is not met since 

u2dz + 0 for r = 1. s'1; 
However, since by (4.3) 

J ~ l r i ( * ) a z  = 0, 

it becomes correct in the limit h -+ 0, so the terms found by Riegels give the correct 
coefficients of g i n  (3.1).  

The effect of the term a ( r ,  0) in p 2  is to give a pressure 

p = po  + hpl + h2p2 + O(h3) 

which displaces the circular boundary upon which the outer flow is apparently 
based a little further out, but again to this order the field of streamlines plotted 
by Riegels can be made to give the actual flow field by a small linear increase in 
the scale of r. 

Nevertheless some misgivings must still be felt about applying the expansions 
(3.1) to such a large value of A as 4.0, and the apparent occurrence of a boundary- 
layer separation in Riegels's photographed flow would suggest that these mis- 
givings are well founded. 

Appendix. The inner equations of motion 
r direction 
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6' direction 
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Continuity a aw - [( 1 + h X )  U ]  + h& + (1  + h X )  - = 0. ax az 

This work forms part of a Ph.D. thesis for the University of London, and was 
carried out under the supervision of Prof. K. Stewartson, t o  whom the author is 
grateful for much help and advice. 

He is also grateful for a grant from the Science Research Council which sup- 
ported the work, and to the Imperial College of Science and Technology, London, 
for making available the facilities of their IBM 7090 computer. 

REFERENCES 

GAYDON, F. A. & SHEPHERD, W. M. 1964 Proc. Roy. SOC. A 281, 184. 
HAFLDY, G. H. 1902 Mess. of Math. XXXI, 161. 
HELE-SHAW, H. S. 1897 Trams. Roy. Inst. Nav. Arch. 41, 21. 
BLE-SHAW, H. S. 1898a Trans. Roy. In&. Nav. Arch. 42, 49. 
HELE-SHAW, H. S. 1898b Rept. 68th Mtg. Brit. Ass.  136. 
HILLMAN, A. P. & SALZER, H. E. 1943 Phil. Mag. 34, 575. 
RIEGELS, F. 1938 ZAMM, 18, 95. 
STOKES, G. G. 1898 appendix to Hele-Shaw (1898b). 
THOMPSON, B. W. 1964 M.So. Thesis, Melbourne. 
THOMPSON, B. W. 1967 Ph.D. Thesis, London. 




